Analyzing stock market trends is essential for making informed investment decisions. Leveraging Artificial Intelligence (AI), specifically models like ChatGPT-4o, can enhance the accuracy and efficiency of trend detection. This guide provides a comprehensive approach to analyzing stock trends using daily CSV data in Python, integrating AI for trend analysis, and validating insights through backtesting.
Before diving into the implementation, ensure you have the following tools and libraries installed:
pip install pandas numpy matplotlib yfinance pandas-ta backtrader scikit-learn tensorflow keras openai
Use the yfinance
library to download historical stock data. This data will include essential columns such as Date, Open, High, Low, Close, and Volume.
import yfinance as yf
import pandas as pd
def get_stock_data(symbol, start_date, end_date):
df = yf.download(symbol, start=start_date, end=end_date)
df.to_csv(f'{symbol}_data.csv')
return df
# Example usage
data = get_stock_data('AAPL', '2023-01-01', '2025-01-27')
Load the CSV data into a pandas DataFrame and ensure the Date column is properly formatted.
import pandas as pd
# Load data
data = pd.read_csv('AAPL_data.csv')
# Convert Date column to datetime
data['Date'] = pd.to_datetime(data['Date'])
# Set Date as index
data.set_index('Date', inplace=True)
# Display first few rows
print(data.head())
Create additional features that will help in trend detection, such as Moving Averages and Relative Strength Index (RSI).
import pandas_ta as ta
# Calculate Moving Averages
data['MA10'] = data['Close'].rolling(window=10).mean()
data['MA50'] = data['Close'].rolling(window=50).mean()
# Calculate RSI
data['RSI'] = ta.rsi(data['Close'], length=14)
# Drop missing values
data.dropna(inplace=True)
print(data.tail())
Create a target variable that indicates an uptrend or downtrend based on the closing price relative to the moving averages.
import numpy as np
# Define trend: 1 for uptrend, 0 for downtrend
data['Trend'] = np.where(data['Close'] > data['MA10'], 1, 0)
# Shift trend to avoid look-ahead bias
data['Trend'] = data['Trend'].shift(-1)
# Drop the last row with NaN
data.dropna(inplace=True)
print(data[['Close', 'MA10', 'MA50', 'RSI', 'Trend']].head())
Split the dataset into features (X) and target variable (y), then perform a train-test split.
from sklearn.model_selection import train_test_split
# Features and target
X = data[['Close', 'MA10', 'MA50', 'RSI']]
y = data['Trend']
# Train-test split (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(X_train.shape, X_test.shape)
Use a Logistic Regression model for binary classification of trends.
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# Initialize and train the model
model = LogisticRegression()
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
# Evaluation
print(classification_report(y_test, y_pred))
For more advanced modeling, consider using LSTM (Long Short-Term Memory) networks for time-series prediction.
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
# Scaling the features
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
# Reshape for LSTM
X_train_reshaped = np.reshape(X_train.values, (X_train.shape[0], 1, X_train.shape[1]))
X_test_reshaped = np.reshape(X_test.values, (X_test.shape[0], 1, X_test.shape[1]))
# Building LSTM model
lstm_model = Sequential([
LSTM(100, return_sequences=True, input_shape=(1, X_train.shape[1])),
LSTM(50),
Dense(1, activation='sigmoid')
])
# Compile the model
lstm_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
lstm_model.fit(X_train_reshaped, y_train, epochs=10, batch_size=16)
# Predictions
y_pred_lstm = (lstm_model.predict(X_test_reshaped) > 0.5).astype("int32")
# Evaluation
print(classification_report(y_test, y_pred_lstm))
Use the backtrader
library to validate the AI-generated signals by simulating trades based on the predicted trends.
import backtrader as bt
class TrendStrategy(bt.Strategy):
def __init__(self):
self.ma50 = bt.indicators.SimpleMovingAverage(self.data.close, period=50)
self.ma200 = bt.indicators.SimpleMovingAverage(self.data.close, period=200)
self.rsi = bt.indicators.RSI(self.data.close, period=14)
def next(self):
if self.data.close[0] > self.ma50[0] and self.rsi[0] < 30:
if not self.position:
self.buy()
elif self.data.close[0] < self.ma50[0] and self.rsi[0] > 70:
if self.position:
self.sell()
# Initialize Cerebro engine
cerebro = bt.Cerebro()
cerebro.addstrategy(TrendStrategy)
# Create data feed
data_feed = bt.feeds.PandasData(dataname=data)
cerebro.adddata(data_feed)
# Set initial cash
cerebro.broker.set_cash(100000)
# Set commission
cerebro.broker.setcommission(commission=0.001)
# Run the backtest
print(f"Starting Portfolio Value: {cerebro.broker.getvalue()}")
cerebro.run()
print(f"Final Portfolio Value: {cerebro.broker.getvalue()}")
# Plot the results
cerebro.plot()
After running the backtest, assess performance metrics such as Return on Investment (ROI), Maximum Drawdown, and Sharpe Ratio.
Metric | Value |
---|---|
Starting Portfolio Value | $100,000 |
Final Portfolio Value | $XXX,XXX |
ROI | XX% |
Maximum Drawdown | XX% |
Sharpe Ratio | X.XX |
Improve the strategy by experimenting with different indicators, adjusting parameters, and incorporating additional AI insights.
Visualize the stock prices along with moving averages and RSI to identify trends and signals clearly.
import matplotlib.pyplot as plt
# Plot Closing Price and Moving Averages
plt.figure(figsize=(14,7))
plt.plot(data.index, data['Close'], label='Close Price')
plt.plot(data.index, data['MA10'], label='10-Day MA')
plt.plot(data.index, data['MA50'], label='50-Day MA')
plt.title('Stock Price and Moving Averages')
plt.legend()
plt.show()
# Plot RSI
plt.figure(figsize=(14,4))
plt.plot(data.index, data['RSI'], label='RSI')
plt.axhline(70, color='red', linestyle='--')
plt.axhline(30, color='green', linestyle='--')
plt.title('Relative Strength Index')
plt.legend()
plt.show()
Create a summary report of the backtest results, including key metrics and visual representations.
# Example summary
print("Backtest Summary")
print(f"Total Trades: {len(results)}")
print(f"Winning Trades: {len(results[results['PNL'] > 0])}")
print(f"Win Rate: {(len(results[results['PNL'] > 0])/len(results))*100:.2f}%")
print(f"Average PNL: {results['PNL'].mean():.2f}%")
Integrating AI models like ChatGPT-4o with Python for stock trend analysis offers a powerful tool for investors and analysts. By effectively preparing data, leveraging machine learning for trend detection, and validating strategies through backtesting, you can develop robust trading strategies. Continuous refinement and incorporation of advanced techniques will further enhance the accuracy and reliability of your stock market analyses.