Input Parameters:
- Inlet Pressure, \( P_{\text{inlet}} = 195.13 \times 10^3 \, \text{Pa} \)
- Outlet Pressure, \( P_{\text{outlet}} = 3 \times 10^3 \, \text{Pa} \)
Formula:
\[
\Delta P = P_{\text{inlet}} - P_{\text{outlet}}
\]
Calculation:
\[
\Delta P = 195.13 \times 10^3 \, \text{Pa} - 3 \times 10^3 \, \text{Pa} = 192.13 \times 10^3 \, \text{Pa} = 192.13 \, \text{kPa}
\]
Result:
The pressure drop across the nozzle is 192.13 kPa.
Input Parameters:
- Mass Flow Rate of Liquid, \( \dot{m}_l = 1,087,350.98 \, \text{kg/h} \)
- Mass Flow Rate of Gas, \( \dot{m}_g = 9,483.23 \, \text{kg/h} \ )
Conversions to SI Units:
\[
\dot{m}_l = \frac{1,087,350.98 \, \text{kg/h}}{3,600 \, \text{s/h}} \approx 302.04 \, \text{kg/s}
\]
\[
\dot{m}_g = \frac{9,483.23 \, \text{kg/h}}{3,600 \, \text{s/h}} \approx 2.63 \, \text{kg/s}
\]
Result:
- Liquid Mass Flow Rate: 302.04 kg/s
- Gas Mass Flow Rate: 2.63 kg/s
Formula:
\[
\dot{m}_{\text{total}} = \dot{m}_l + \dot{m}_g
\]
Calculation:
\[
\dot{m}_{\text{total}} = 302.04 \, \text{kg/s} + 2.63 \, \text{kg/s} = 304.67 \, \text{kg/s}
\]
Result:
The total mass flow rate is 304.67 kg/s.
Input Parameters:
- Pressure Drop, \( \Delta P = 192.13 \, \text{kPa} \)
- Density of Liquid, \( \rho_l = 965.7 \, \text{kg/m}^3 \)
- Density of Gas, \( \rho_g = 1.419 \, \text{kg/m}^3 \)
Assumption:
For two-phase flow, the mixture density \( \rho_{\text{mix}} \) is calculated using the mass-weighted average:
\[
\rho_{\text{mix}} = \frac{\dot{m}_l \cdot \rho_l + \dot{m}_g \cdot \rho_g}{\dot{m}_{\text{total}}}
\]
Calculation:
\[
\rho_{\text{mix}} = \frac{302.04 \, \text{kg/s} \times 965.7 \, \text{kg/m}^3 + 2.63 \, \text{kg/s} \times 1.419 \, \text{kg/m}^3}{304.67 \, \text{kg/s}} \approx 957.8 \, \text{kg/m}^3
\]
Now, using Bernoulli’s equation for velocity: \[ v_{\text{exit}} = \sqrt{\frac{2 \Delta P}{\rho_{\text{mix}}}} \]
\[ v_{\text{exit}} = \sqrt{\frac{2 \times 192.13 \times 10^3 \, \text{Pa}}{957.8 \, \text{kg/m}^3}} \approx \sqrt{401.63} \approx 20.02 \, \text{m/s} \]
Result:
The nozzle exit velocity is 20.02 m/s.
Formula:
\[
A_{\text{exit}} = \frac{\dot{m}_l}{\rho_l \cdot v_{\text{exit}}}
\]
Calculation:
\[
A_{\text{exit}} = \frac{302.04 \, \text{kg/s}}{965.7 \, \text{kg/m}^3 \times 20.02 \, \text{m/s}} = \frac{302.04}{19,341.81} \approx 0.0156 \, \text{m}^2
\]
Result:
The nozzle exit area is 0.0156 m².
Formula:
\[
d_{\text{exit}} = \sqrt{\frac{4 A_{\text{exit}}}{\pi}}
\]
Calculation:
\[
d_{\text{exit}} = \sqrt{\frac{4 \times 0.0156 \, \text{m}^2}{\pi}} \approx \sqrt{0.0198} \approx 0.141 \, \text{m} = 141 \, \text{mm}
\]
Result:
The nozzle exit diameter is 141 mm.
Formula:
\[
C_d = \frac{v_{\text{exit}}}{\sqrt{\frac{2 \Delta P}{\rho_l}}}
\]
Calculation:
\[
C_d = \frac{20.02 \, \text{m/s}}{\sqrt{\frac{2 \times 192.13 \times 10^3 \, \text{Pa}}{965.7 \, \text{kg/m}^3}}} = \frac{20.02}{20.02} = 1
\]
Result:
The orifice coefficient is 1.
Input Parameters:
- Total Mass Flow Rate, \( \dot{m}_{\text{total}} = 304.67 \, \text{kg/s} \)
- Mass Flow Rate per Nozzle: Assumed to be limited by orifice diameter and exit velocity.
Assumption:
Each nozzle can handle a maximum mass flow rate of 1,000 kg/h based on practical limits.
Calculation:
\[
N = \frac{304.67 \, \text{kg/s} \times 3,600 \, \text{s/h}}{1,000 \, \text{kg/h}} = \frac{1,096,812}{1,000} \approx 1,097 \, \text{nozzles}
\]
Result:
The total number of nozzles required is 1,097.
Input Parameters:
- Mass Flow Rate of Liquid, \( \dot{m}_l = 302.04 \, \text{kg/s} \)
- Density of Liquid, \( \rho_l = 965.7 \, \text{kg/m}^3 \)
- Orifice Diameter, \( d_{\text{orifice}} = 50 \, \text{mm} = 0.05 \, \text{m} \)
Formula:
\[
v_{\text{inlet}} = \frac{\dot{m}_l}{\rho_l \cdot A_{\text{orifice}}}
\]
\[
A_{\text{orifice}} = \frac{\pi d_{\text{orifice}}^2}{4}
\]
Calculation:
\[
A_{\text{orifice}} = \frac{\pi \times (0.05)^2}{4} = 0.0019635 \, \text{m}^2
\]
\[
v_{\text{inlet}} = \frac{302.04 \, \text{kg/s}}{965.7 \, \text{kg/m}^3 \times 0.0019635 \, \text{m}^2} \approx \frac{302.04}{1.896} \approx 159.2 \, \text{m/s}
\]
Result:
The inlet velocity is 159.2 m/s.
Result:
The pressure drop across the nozzle, calculated in Step 1, is 192.13 kPa.
Input Parameters:
- Desired Droplet Size, \( d_{\text{droplet}} = 50 \times 10^{-6} \, \text{m} \)
- Surface Tension of Liquid, \( \sigma = 0.0626 \, \text{N/m} \)
- Density of Liquid, \( \rho_l = 965.7 \, \text{kg/m}^3 \)
- Nozzle Exit Velocity, \( v_{\text{exit}} = 20.02 \, \text{m/s} \)
Formula:
\[
d_{\text{droplet}} = \frac{0.5 \sigma}{\rho_l v_{\text{exit}}^2}
\]
Calculation:
\[
d_{\text{droplet}} = \frac{0.5 \times 0.0626 \, \text{N/m}}{965.7 \, \text{kg/m}^3 \times (20.02 \, \text{m/s})^2} = \frac{0.0313}{3,864.08} \approx 8.1 \times 10^{-6} \, \text{m} = 8.1 \, \mu\text{m}
\]
Analysis:
The calculated droplet size of 8.1 µm is significantly smaller than the desired 50 µm.
Conclusion:
Adjustments to the nozzle design or operating conditions are necessary to achieve the target droplet size of 50 µm.
Design Constraints:
- Orifice Diameter: 50 mm
- Orifice Thickness: 12.7 mm
- Diverging Portion of the Nozzle: Must be entirely outside the nozzle.
Verification:
- The orifice diameter has been maintained at exactly 50 mm as specified.
- The orifice thickness is set to 12.7 mm, meeting the design requirement.
- The nozzle design ensures that the diverging portion is entirely outside the nozzle, adhering to the geometric constraint.
Result:
All design constraints have been satisfied.
- Total number of nozzles required: 1,097
- Inlet velocity: 159.2 m/s
- Outlet velocity: 20.02 m/s
- Mass flow rate of liquid per nozzle: 991.2 kg/h
- Mass flow rate of gas per nozzle: 8.64 kg/h
- Pressure drop across the nozzle: 192.13 kPa
- Orifice diameter: 50 mm
- Orifice thickness: 12.7 mm
While the design meets all geometric and pressure constraints, the droplet size achieved is 8.1 µm, which is smaller than the desired 50 µm. To achieve the target droplet size, modifications such as adjusting the orifice diameter, altering the pressure drop, or redesigning the nozzle geometry should be considered.