This detailed comparison examines five major U.S. cities: New York City, Los Angeles, Chicago, Houston, and Phoenix. We will explore various aspects including population, area, income, notable features, airport codes, time zones, and more. This information is presented in a structured format for easy understanding and comparison.
Here's a table summarizing key data points for each city:
City | State | Population (2023 est.) | Area (sq mi) | Median Household Income | Time Zone | Notable Feature | Major Airport Code(s) | Area Code(s) |
---|---|---|---|---|---|---|---|---|
New York City | NY | 8,336,817 | 302.6 | 67,000 | Eastern (EST/EDT) | Statue of Liberty | JFK, LGA, EWR | 212, 646, 917 |
Los Angeles | CA | 3,898,747 | 503 | 62,000 | Pacific (PST/PDT) | Hollywood Sign | LAX | 213, 310, 323 |
Chicago | IL | 2,746,388 | 234 | 58,000 | Central (CST/CDT) | Willis Tower | ORD, MDW | 312, 773 |
Houston | TX | 2,304,580 | 637 | 59,000 | Central (CST/CDT) | Space Center | IAH, HOU | 713, 281, 832 |
Phoenix | AZ | 1,608,139 | 517 | 60,000 | Mountain (MST) | Desert Landscape | PHX | 602, 480, 623 |
Below, we delve deeper into specific aspects of each city:
Here's an example of how you can store and manipulate this data using Python:
cities = {
'New York City': {
'state': 'NY',
'area_codes': ['212', '646', '917'],
'population': 8336817,
'time_zone': 'Eastern',
'area': 302.6,
'median_income': 67000,
'notable_feature': 'Statue of Liberty',
'airports': ['JFK', 'LGA', 'EWR']
},
'Los Angeles': {
'state': 'CA',
'area_codes': ['213', '310', '323'],
'population': 3898747,
'time_zone': 'Pacific',
'area': 503,
'median_income': 62000,
'notable_feature': 'Hollywood Sign',
'airports': ['LAX']
},
'Chicago': {
'state': 'IL',
'area_codes': ['312', '773'],
'population': 2746388,
'time_zone': 'Central',
'area': 234,
'median_income': 58000,
'notable_feature': 'Willis Tower',
'airports': ['ORD', 'MDW']
},
'Houston': {
'state': 'TX',
'area_codes': ['713', '281', '832'],
'population': 2304580,
'time_zone': 'Central',
'area': 637,
'median_income': 59000,
'notable_feature': 'Space Center',
'airports': ['IAH', 'HOU']
},
'Phoenix': {
'state': 'AZ',
'area_codes': ['602', '480', '623'],
'population': 1608139,
'time_zone': 'Mountain',
'area': 517,
'median_income': 60000,
'notable_feature': 'Desert Landscape',
'airports': ['PHX']
}
}
def get_population(city):
return cities[city]['population']
def get_area_codes(city):
return cities[city]['area_codes']
def get_cities_in_timezone(timezone):
return [city for city, data in cities.items()
if data['time_zone'] == timezone]
def get_median_income(city):
return cities[city]['median_income']
def get_notable_feature(city):
return cities[city]['notable_feature']
def get_area(city):
return cities[city]['area']
def get_airports(city):
return cities[city]['airports']
# Example usage
print(f"Population of Chicago: {get_population('Chicago')}")
print(f"Area codes in Los Angeles: {get_area_codes('Los Angeles')}")
print(f"Cities in Central time zone: {get_cities_in_timezone('Central')}")
print(f"Median income in Houston: {get_median_income('Houston')}")
print(f"Notable feature of Phoenix: {get_notable_feature('Phoenix')}")
print(f"Area of New York City: {get_area('New York City')}")
print(f"Airports in Phoenix: {get_airports('Phoenix')}")
This code creates a dictionary of dictionaries to store the city data and includes example functions to access and filter the data. The example usage demonstrates how to retrieve specific information about each city.