Unlock Big Data Potential: Master SAS to Parquet Conversion on HDFS
Comprehensive guide to efficiently transform large SAS datasets into high-performance Parquet format for advanced analytics
Key Approaches to Converting SAS Files to Parquet on HDFS
Apache Spark - Leverage distributed processing for seamless conversion of large SAS files
SAS-specific Tools - Utilize SAS Viya and custom steps for direct Parquet export
Programming Languages - Implement R and Python solutions for flexible conversion options
Using Apache Spark for SAS to Parquet Conversion
Apache Spark provides powerful distributed processing capabilities that make it ideal for handling large SAS files. The spark-sas7bdat library enables Spark to read SAS data directly and convert it to Parquet format.
Spark-SAS7BDAT Approach
The spark-sas7bdat library allows direct reading of SAS7BDAT files into Spark DataFrames:
from pyspark.sql import SparkSession
# Initialize Spark session
spark = SparkSession.builder.appName("SAS to Parquet").getOrCreate()
# Read SAS file using spark-sas7bdat
df = spark.read.format('com.github.saurfang.sas7bdat').load('path/to/local/file.sas7bdat')
# Write to Parquet format on HDFS
df.write.parquet('hdfs://path/to/hdfs/output.parquet')
Setting Up Spark with SAS7BDAT Support
To use the spark-sas7bdat library, you'll need to include it when launching Spark:
You can also create Hive tables that store data in Parquet format:
libname hive hadoop
server="hadoop-server.example.com"
user=&sysuserid
password="password"
database=hive_db
subprotocol=hive2
DBCREATE_TABLE_OPTS='STORED AS PARQUET';
proc sql;
create table hive.sas_data_parquet as select * from work.source_data;
quit;
Using R and Python for SAS to Parquet Conversion
R with parquetize Package
The parquetize package in R provides memory-efficient conversion of large SAS files:
library(parquetize)
# Convert SAS to Parquet with memory limits
table_to_parquet(
path_to_file = "large_file.sas7bdat",
path_to_parquet = "output_directory",
max_memory = 5000, # Maximum memory usage in MB
encoding = "utf-8"
)
Python with Pandas and PyArrow
For Python users, pandas combined with pyarrow can read SAS files and write to Parquet:
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from pyarrow import fs
# Read SAS file
df = pd.read_sas("large_file.sas7bdat", encoding="utf-8")
# Create PyArrow table
table = pa.Table.from_pandas(df)
# Create HDFS filesystem object
hdfs = fs.HadoopFileSystem(host="namenode", port=8020)
# Write to Parquet on HDFS
pq.write_table(table, "path/to/output.parquet", filesystem=hdfs)
Using Jupyter Notebook with saspy
The saspy library allows Python users to execute SAS procedures and convert data:
import saspy
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
# Connect to SAS session
sas = saspy.SASsession()
# Get SAS data
sas_data = sas.sasdata('dataset', libref='mylib')
# Convert to pandas DataFrame
df = sas_data.to_df()
# Write to Parquet
df.to_parquet("output.parquet")